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Diagnostic Agents for Distributed SystemsPeter Fr�ohlich1, Iara de Almeida M�ora2, Wolfgang Nejdl1and Michael Schroeder1ffroehlich, nejdl, schroederg@kbs.uni{hannover.de, idm@fct.unl.ptOctober 5, 1996AbstractIn this paper we introduce an agent{based framework for the diagnosisof spatially distributed technical systems, based on a suitable distributeddiagnosis architecture. We implement the framework using the conceptsof vivid agents and extended logic programming. To demonstrate thepower of our approach, we solve a diagnosis example from the domain ofunreliable datagram protocols.Submission Information: This paper has not been submitted to another con-ference or workshop.Keywords: Multi Agent Systems, Logic Programming, DiagnosisPost-Proceedings: We also submit this paper for the post{proceedings.1 IntroductionThe advent of large distributed technical systems like computer and telecommu-nication networks has been one of the most striking developments of our time.Research in model{based diagnosis as documented in several AI conferences anda series of workshops [Pro94, Nej95] has up to now not tackled the question howto support such systems by a suitable diagnosis architecture.We introduce an agent{based framework for the diagnosis of spatially distrib-uted systems. The motivation for such a framework is the unnecessary complex-ity and communication overhead of centralized solutions. Consider a distributedsystem with n nodes, e.g. a computer network consisting of n machines. Whenusing a centralized diagnosis system the size of the system description (i.e. num-ber of ground formulas) is linear in n. Diagnosis time will usually be worse thanlinear in n [MH93]. Also all observations have to be transmitted to the centraldiagnosis machine, causing a large communication overhead.Our agent{based approach decomposes a system into a set of subsystems.Each subsystem is diagnosed by an agent which has detailed knowledge over his1Institut f�ur Rechnergest�utzte Wissensverarbeitung, Lange Laube 3, 30159 Hannover, Ger-many, Tel.: +49 511 762 9714, Fax: +49 511 762 97122Departamento de Inform�atica, Universidade Nova de Lisboa, 2825 Monte de Caparica,Portugal 1
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subsystem and an abstract view of the neighboring subsystems. Most failurescan be diagnosed locally within one subsystem. This decreases diagnosis timedramatically in large systems. In the case of the computer network most ma-chines in a subnet can usually fail without a�ecting machines in other subnets.Only those computers in other subnets can be a�ected which have sent messagesto the faulty machine. Moreover, the local computation of diagnoses avoids thecommunication overhead which would be needed to forward all observations tothe central diagnosis engine.Failures, which a�ect more than one subsystem are diagnosed by the agentscooperating with each other. The cooperation process is triggered locally by anagent, when it realizes that it can not explain the observations by a failure inhis own subsystem. The cooperation process is guided by a small amount oftopological information.We have implemented spatially distributed diagnosis using extended logicprogramming [SdAMP96, SW96] and the vivid agents concept [Wag96a, Wag96b].Vivid agents support both the declarative description of the domain by a exi-ble knowledge base component and the speci�cation of the reactive behavior ofagents by a set of rules, which are activated by communication events.To demonstrate the power of our approach we formalize the domain of anunreliable protocol (like UDP) in a computer network and diagnose an examplescenario.2 Spatially Distributed DiagnosisIn their survey article in [BG88], Bond and Gasser discuss several measures ofconceptual distance among agents, which de�ne di�erent types of distribution.In [FN96] semantical and spatial distribution are identi�ed as the relevant dis-tribution concepts for diagnosis. Semantical distribution refers to a situationwhere the knowledge is distributed among the agents. Each agent is an expertfor a certain problem domain. Diagnostic concepts for semantical distributionmust rely on external criteria rather than cooperation among the agents becausethe knowledge bases of the diagnostic agents are not compatible.In this paper we describe spatially distributed diagnosis. Distributed tech-nical systems often consist of subsystems which have the same structure. Sowe can describe the subsystems by a common set of axioms. The particularproperties of the concrete subsystem are de�ned by logical facts. As we will see,the description of the subsystems by a common vocabulary allows us to resolveconicts using cooperation among the agents.After giving a short overview of the necessary concepts from model{baseddiagnosis, we will describe our view of spatially distributed diagnosis in moredetail. Then we will de�ne the diagnostic conicts between the subsystems aswell as the distributed diagnosis concept formally.
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Figure 1: Model{Artifact Di�erence2.1 Model{based DiagnosisHeuristic rule{based expert systems were the �rst approach to automated di-agnosis. The knowledge bases of such systems could not be easily modi�ed orveri�ed to be correct and complete. These di�culties have been overcome bythe introduction of model{based diagnosis [Rei87], where a simulation model ofthe device under consideration is used to predict its normal behavior, given theobserved input parameters. Diagnoses are computed by comparison of predictedvs. actual behavior (Fig. 1).This approach uses an extendible logical model of the device, called thesystem description (SD), usually formalized as a set of formulas expressed in�rst{order logic. The system description consists of a set of axioms charac-terizing the behavior of system components of certain types. The topology ismodeled separately by a set of facts.We will now de�ne the diagnostic concept mathematically. The diagnosticproblem is described by system description SD, a set COMP of components anda set OBS of observations (logical facts). With each component we associate abehavioral mode: Mode(c;Ok) means that component c is behaving correctly,while Mode(c;Ab) (abbreviated by Ab(c)) denotes that c is faulty.In Consistency{Based Diagnosis , the concept we are using throughout thispaper, a Diagnosis D is a set of faulty components, such that the observedbehavior is consistent with the assumption, that exactly the components in Dare behaving abnormally. If a diagnosis contains no proper subset which is itselfa diagnosis, we call it a Minimal Diagnosis.De�nition 2.1 (Reiter 87) A Diagnosis of (SD;COMP;OBS) is a set � �COMP, such that SD [ OBS [ fMode(c,Ab)jc 2 COMPg [ f:Mode(c,Ab)jc 2COMP��g is consistent. � is called a Minimal Diagnosis, i� it is the minimalset (wrt. �) with this property.Minimal Diagnoses are a natural concept, because we do not want to assumethat a component is faulty, unless this is necessary to explain the observedbehavior. Since the set of minimal diagnoses can be still quite large and the3



www.manaraa.com

ultimate goal is to identify a single diagnosis, stronger minimality criteria areused which allow stronger discrimination among the diagnoses.The most frequently used concepts are Minimal Cardinality Diagnosis andMost Probable Diagnosis . In addition to these stronger de�nitions of diagnosisthe agents can use measurements to discriminate among competing diagnoses.For our distributed diagnosis framework we assume that every agent hasidenti�ed a single diagnosis for its subsystem.2.2 Properties of Spatial DistributionSpatial distribution is a natural organization scheme for the distributed diag-nosis of large technical systems like communication networks. With each agentwe associate a certain area of the system, for which it is responsible.Consider a large distributed system, e.g. a communication network, whichis divided into a set of spatially distributed subsystems (subnets), as shown in�gure 2. Each square in the grid is a subsystem and has a diagnostic agentassociated with it.
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A4A5A6Figure 2: A communication networkWhat could be the system view of agentA1? Of course, it has detailed knowl-edge about its own subsystem (provided by the control component). For compo-nents in its own subsystem the agent himself is responsible and its diagnoses arereliable. Since it does not share its local observations and measurements withother agents (except for specialized information used during cooperation) it isthe only agent, which can compute detailed diagnosis of its subsystem. In thedecentralized structure of this network, the machine C2 must have at least somerouting information. It has to know that there are two adjacent subnets N2and N6, to which it can send information. More generally we assume that eachagent has some information on the neighboring subsystems, i.e. the subsystemsdirectly connected to its own in the system structure.Now we will describe this view by means of abstractions and simpli�cations:An agent Ai knows only the name of each neighboring subnet Nj (and perhaps4
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a name of a server within Nj) but not Nj 's internal structure. When Ai diag-noses an error involving subnet Nj (e.g. a lost message routed via Nj), then thediagnosis will contain Mode(Nj ;Ab). The abstract literal Mode(Nj ;Ab) implic-itly implies that some particular component within Nj is faulty. In general, anagent Ai has an abstract model of the neighboring subsystems. Furthermore,Ai only knows that Nj is the �rst subnet on the route to the destination ofthe lost message. It is a simplifying assumption, that Nj is the only subnetinvolved in the transmission. Stated more generally, an agent Ai initially usesthe simplifying assumption that all errors it cannot explain are caused by itsimmediate neighbors. We will see, how he can get more detailed informationduring the cooperation process.2.3 FormalizationThe subsystems and also the components within each subsystem have standardnames. A predicate Area Component denotes that component c is situatedwithin area a of the system. We call the extension of this predicate for a givensystem the Component Hierarchy .De�nition 2.2 Component Hierarchy. The Component Hierarchy CH for adistributed system is a set of facts for the predicate Area Component.Example 2.3 For our communication network we haveCH : Area Component(N1; C1)Area Component(N1; C2)Area Component(N2; C3): : :Using the predicate Area Component, we can formulate a consistency con-dition between the abstract subsystem{level and the detailed component level.We de�ne the consistency of abstractions axiom:De�nition 2.4 Consistency of Abstractions. The axiomCA : 8c: ((Mode(c;Ab) ^ 9d:Area Component(c; d))! 9e:(Area Component(c; e) ^Mode(e;Ab)))requires, that each abnormality of an abstract component is caused by an abnor-mality of one of its subcomponents.The axiom Disjointness of Modes states that a component can only be inone behavioral mode at a given time point and is expressed by the followingaxiom:De�nition 2.5 Disjointness of Modes.DM : 8c:8m1:8m2:(Mode(c;m1) ^Mode(c;m2))! m1 = m25
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2.4 Diagnosis by CooperationEach diagnostic agent knows only a small part of the entire system. It cancompute diagnoses independently, because it maintains a set of assumptionsconcerning the other parts of the system. In this paper, we will assume thatall locally computed diagnoses are considered as reliable. The bargain fromdistributed diagnosis is that a lot of problems can be solved locally so that thesimplifying assumptions hold. The cooperation process is necessary when anagent cannot detect a faulty component within its subsystem. In this case, itstarts a cooperation process:De�nition 2.6 Need for CooperationGiven observations OBS, a component hierarchy CH, the axiom of consistencyof abstractions CA, and a system description SD such that CH,CA 2 SD. If Aiknows that it is not abnormal, i.e.SDNi [OBS j= :Mode(Ni; Ab) and SDNi [OBS [ fMode(Nj ; Ab)g 6j= ?then there is a need for cooperation to determine a global diagnosis and Njis a possible partner for cooperation.Example 1 In the example of the communication network the observation of alost message (let us assume an unreliable protocol such as UDP) means that itwas lost somewhere on the way from sender to recipient. But of course the agentsknow only their own subnet in detail and have an abstract view of the neighboringsubnets. Reported loss of a datagram is formalized as an observation using thepredicate Message Lost. Message Lost(N1; N5) means that a lost message hasbeen reported which was sent from network N1 to network N5. When agent Aitransmits a message via a neighboring subnet Nj and the message is lost, Aiwill assume that it was lost in Nj since this is the only point on the route itknows. We can formalize this simplifying assumption explicitly by introducinga predicate On Route.CLM : Message Lost(Sender;Recipient)! 9c:(On Route(Sender;Recipient; n) ^Mode(n;Ab))is called Existence of a Cause for a Lost Message.Initially, each agent Ai knows the following facts about On Route, if Nrk isthe routing table entry of Recipientk:RT : On Route(Ni;Recipient1; Ni)On Route(Ni;Recipient1; Nr1)On Route(Ni;Recipient2; Ni)On Route(Ni;Recipient2; Nr2). . .Now assume a message gets lost from N1 to C7, i.e. Message Lost(N1; C7)and the agent A1 determines that it is not its fault, i.e. :Mode(N1; Ab) holds.Then A1 computes a local diagnosis Mode(N2; Ab) and thus there is a need forcooperation in order to obtain a global solution.6
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A cooperation process is started by sending/receiving an observation. Withthe new observation the agent computes diagnoses which can lead to three dif-ferent situations. First, it might turn out that it is abnormal itself. Then othersolutions can be neglected since we assume that the agents have certain knowl-edge about their own state. Second, there are no diagnoses at all which meansthat the initial fault is intermittent. Third, there is a need for cooperation.Then the agent re�nes the received observation and sends it to the neighborwaiting for its reply. In any of the cases the requesting agent is informed of the�nal result.De�nition 2.7 Diagnosis by CooperationGiven an agent A1 which receives a message from agent A2 with an observationOBS such that SDA1 [OBS j= ? then there are three cases:1. SDA1 [ OBS [ fMode(N1; Ab)g 6j= ?, i.e. the agent's own subsystem isfaulty2. there are no D such that SDA1 [OBS[D 6j= ?, then there must have beenan intermittent failure3. there is a need for cooperation (see de�nition 2.6) and the observation isre�ned and sent to another agent which is then in charge of providing adiagnosis resultThe diagnosis result is sent to A2.Example 2 Assume A1 receives by a subcomponent the message that a messageis lost from N1 to C7 and N1 not being abnormal. A diagnosis of A1 is that A2is abnormal and thus there is a need for cooperation. The initial observationMessage Lost(N1; C7) is re�ned as follows:RO : Message Lost(Sender;Recipient) ^ :Mode(Sender;Ab)^On Route(Sender;Recipient;Next Sender)!New Message Lost(Next Sender;Recipient)The new observation is sent to A2. Since a2 is not abnormal this agent asksA3 for help. A3 is faulty and replies that it is responsible. A2 passes this resultto A1. The union of all system descriptions involved is consistent with the �naldiagnosis of A3.Now we can de�ne distributed diagnosis. A diagnosis for the union of allsystem descriptions is called distributed diagnosis:De�nition 2.8 Distributed DiagnosisA Distributed Diagnosis of (fSDA1 ; : : :SDAng;COMP;OBS) is a set � � COMP,such that SDA1[: : :[SDAn[OBS[fMode(c,Ab)jc 2 COMPg[f:Mode(c,Ab)jc 2COMP��g is consistent.Example 3 fMode(N3; Ab);Mode(C7; Ab)g is a distributed diagnosis for thesystem description and observations in the above example.7
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In order to implement the scenario above we need separate diagnostic agentsfor each area. The agents need a knowledge base containing the description oftheir area and they have to be capable of reactive behavior in order to solve aproblem in cooperation with other agents.The theoretical basis of the implementation is the concept of vivid agents[Wag96b] and a prototype developed for fault-tolerant diagnosis [SdAMP96,SW96]. Below we briey review the vivid agents and extended logic program-ming. We proceed by showing how the axioms can be expressed as extendedlogic program and how the agents' reactive behavior is coded in terms of reac-tion rules. We round out the picture with a trace of the agents' communicationafter a message is lost.3 Vivid AgentsA vivid agent is a software-controlled system whose state is represented by aknowledge base, and whose behavior is represented by means of action and re-action rules. Following [Sho93], the state of an agent is described in terms ofmental qualities, such as beliefs and intentions. The basic functionality of avivid agent comprises a knowledge system (including an update and an infer-ence operation), and the capability to represent and perform actions in orderto be able to generate and execute plans. Since a vivid agent is `situated' in anenvironment with which it has to be able to communicate, it also needs the abil-ity to react in response to perception events, and in response to communicationevents created by the communication acts of other agents.Notice that the concept of vivid agents is based on the important distinctionbetween action and reaction: actions are �rst planned and then executed in orderto solve a task or to achieve a goal, while reactions are triggered by perceptionand communication events. Reactions may be immediate and independent fromthe current knowledge state of the agent but they may also depend on the resultof deliberation. In any case, they are triggered by events which are not controlledby the agent. A vivid agent without the capability to accept explicit tasks andto solve them by means of planning and plan execution is called reagent. Thetasks of reagents cannot be assigned in the form of explicit ('see to it that')goals at run time, but have to be encoded in the speci�cation of their reactivebehavior at design time.We do not assume a �xed formal language and a �xed logical system for theknowledge-base of an agent. Rather, we believe that it is more appropriate tochoose a suitable knowledge system for each agent individually according to itsdomain and its tasks. In the case of diagnosis agents, extended logic programsproved to be an appropriate form of the knowledge base of an agent becauseit is essential for model-based diagnosis to be able to represent negative facts,default rules and constraints.
8
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3.1 Speci�cation and Execution of ReagentsSimple vivid agents whose mental state comprises only beliefs, and whose behav-ior is purely reactive, i.e. not based on any form of planning and plan execution,are called reagents. A reagent A = hX;EQ;RRi, on the basis of a knowledgesystem K consists of1. a knowledge base X 2 LKB,2. an event queue EQ being a list of instantiated event expressions, and3. a set RR of reaction rules, consisting of epistemic and physical reactionand interaction rules which code the reactive and communicative behaviorof the agent.A multi-reagent system is a tuple of reagents:S = hA1; : : : ;Ani3.1.1 Operational Semantics of Reaction RulesReaction rules encode the behavior of vivid agents in response to perceptionevents created by the agent's perception subsystems, and to communicationevents created by communication acts of other agents. We distinguish betweenepistemic, physical and communicative reaction rules, and call the latter inter-action rules. We use LPEvt and LCEvt to denote the perception and communica-tion event languages, and LEvt = LPEvt [ LCEvt. The following table describesthe di�erent formats of epistemic, physical and communicative reaction rules:E�  recvMsg["(U); S]; Conddo(�(V )); E�  recvMsg["(U); S]; CondsendMsg[�(V ); R]; E�  recvMsg["(U); S]; CondThe event condition recvMsg["(U); S] is a test whether the event queue of theagent contains a message of the form "(U) sent by some perception subsystemof the agent or by another agent identi�ed by S, where " 2 LEvt represents aperception or a communication event type, and U is a suitable list of parame-ters. The epistemic condition Cond 2 LQuery refers to the current knowledgestate, and the epistemic e�ect E� 2 LInput speci�es an update of the currentknowledge state.Physical Reaction: do(�(V )) calls a procedure realizing the action � withparameters V .Communicative Reaction: sendMsg[�(V ); R] sends the message � 2 LCEvtwith parameters V to the receiver R.Both perception and communication events are represented by incoming mes-sages. In general, reactions are based both on perception and on knowledge.Immediate reactions do not allow for deliberation. They are represented by9
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rules with an empty epistemic premise, i.e. Cond = true. Timely reactions canbe achieved by guaranteeing fast response times for checking the preconditionof a reaction rule. This will be the case, for instance, if the precondition can bechecked by simple table look-up (such as in relational databases or fact bases).Reaction rules are triggered by events. The agent interpreter continuallychecks the event queue of the agent. If there is a new event message, it ismatched with the event condition of all reaction rules, and the epistemic condi-tions of those rules matching the event are evaluated. If they are satis�able inthe current knowledge base, all free variables in the rules are instantiated ac-cordingly resulting in a set of triggered actions with associated epistemic e�ects.All these actions are then executed, leading to physical actions and to sendingmessages to other agents, and their epistemic e�ects are assimilated into thecurrent knowledge base.4 Extended Logic Programming andModel-basedDiagnosisIn order to represent diagnosis problems we briey review extended logic pro-gramming and its application to model-based diagnosis.Since Prolog became a standard in logic programming much research hasbeen devoted to the semantics of logic programs. In particular, Prolog's unsat-isfactory treatment of negation as �nite failure led to many innovations. Well-founded semantics [GRS88] turned out to be a promising approach to cope withnegation by default. Subsequent work extended well-founded semantics with aform of explicit negation and constraints [PA92] and showed that the richer lan-guage, called WFSX, is appropriate for a spate of knowledge representation andreasoning forms [PAA93, PDA93, ADP95]. In particular, the technique of con-tradiction removal of extended logic programs [PAA91] opens up many avenuesin model-based diagnosis [PDA93, DNP94, DNPS95, DPS96, SdAMP96, SW96].De�nition 4.1 Extended Logic ProgramAn extended logic program is a (possibly in�nite) set of rules of the formL0  L1; : : : ; Lm; notLm+1; : : : ; notLn (0 � m � n)where each Li is an objective literal (0 � i � n). An objective literal is eitheran atom A or its explicit negation :A.3 Literals of the form notL are calleddefault literals. Literals are either objective or default ones.To capture that it is contradictory for the predicted behavior to di�er fromthe actual observations, we introduce integrity constraints:De�nition 4.2 ConstraintAn integrity constraint has the form? L1; : : : ; Lm; notLm+1; : : : ; notLn (0 � m � n)3Note that explicit and implicit negation are related: :L implies not L.10
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where each Li is an objective literal (0 � i � n), and ? stands for false.In order to avoid a contradiction we change the beliefs that support thecontradiction. The only beliefs that are subject to change concern the closedworld assumption ones. From these we can de�ne a set of revisable defaultliterals, whose truth values may be changed to remove contradictions.De�nition 4.3 RevisableThe revisables R of a program P are a subset of the default negated literals whichdo not have rules in P .In general, we might remove a contradiction by partially dropping the closedworld assumption about some revisable. To declaratively de�ne the contradic-tion removal, we consider all subsets R0 of the revisables, change the truth valueof the literals in R0 from false to true and check whether the revised programis still contradictory. Among those revisions that remove the contradiction weare interested in the minimal ones:De�nition 4.4 RevisionLet R be the revisables of the program P . The set R0 � R is called a revision ifit is a minimal set such that P [ R0 is free of contradiction.The revision of contradictory extended logic programs is a suitable techniqueto compute diagnoses for model-based diagnosis.4.1 The Agents Knowledge BaseUsing the extended logic programming formalism, the agents knowledge basecontains the following logic sentences:Routing tables The routing information comprises facts stating to whichneighbor node a message addressed to a component has to be sent. The knowl-edge is local since each agent only knows its neighbors. In order to keep thefacts in a single knowledge base which is the same for all agents the facts holdonly for the respective agent (i am). For example, for n1 and n2 we get thefollowing routing tables:RT :on route(n1; c3; n2)  i am(n1): on route(n2; c1; n1)  i am(n2):on route(n1; c4; n2)  i am(n1): on route(n2; c2; n1)  i am(n2):on route(n1; c5; n2)  i am(n1): on route(n2; c5; n3)  i am(n2):on route(n1; c6; n2)  i am(n1): on route(n2; c6; n3)  i am(n2):on route(n1; c7; n2)  i am(n1): on route(n2; c7; n3)  i am(n2):on route(n1; c8; n6)  i am(n1): on route(n2; c8; n1)  i am(n2):on route(n1; c9; n2)  i am(n1): on route(n2; c9; n5)  i am(n2):on route(n1; c10; n2)  i am(n1): on route(n2; c10; n5)  i am(n2):: : : : : :11
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Component Hierarchy Additionally, each agent knows its components. Sincethis knowledge is local it is only derivable for the respective agent (i am):CH :area component(n1; c1)  i am(n1): area component(n3; c6)  i am(n3):area component(n1; c2)  i am(n1): area component(n3; c7)  i am(n3):area component(n2; c3)  i am(n2): area component(n6; c8)  i am(n6):area component(n2; c4)  i am(n2): area component(n5; c9)  i am(n5):area component(n3; c5)  i am(n3): area component(n4; c10)  i am(n4):Disjointness of Modes In the implementation we model only two modes,abnormality (ab) and being ok (not ab). Therefore disjointness of modes issatis�ed. The predicate ab is revisable. The default truth value of the predicateab is false, which means that by default we assume components to be working�ne. Possible contradictions to these assumption are caused by violation ofconsistency of abstraction and existence of a cause for a lost message.Consistency of Abstraction An abnormal area contains at least one abnor-mal component. A contradiction arises if the area is detected to be abnormalbut no faulty component is abduced. This constraint has only local character(i am), since an agent cannot detect abnormal components of other areas.CA : ? i am(N); ab(N); not has ab component(N):has ab component(N)  area component(N;C); ab(C):Existence of a cause for a lost message The basic integrity constraintto start the diagnostic process states that it is contradictory to observe a lostmessage from node N to component C and not to have lost it on the route fromN to C. The message is lost somewhere on this route route if at least one theinvolved nodes is abnormal:CLM : ?  message lost(N;C); not lost on route(N;C):lost on route(N;C)  ab(N):lost on route(N;C)  on route(N;C;M); ab(M):The following constraint allows us to abduce new observations. If a messageis lost from N to C and M is a neighbor of N which is assumed to be abnormalby N , then N abduces the new observation that the message was lost on theway from M to C:RO : ?  message lost(N;C); on route(N;C;M);ab(M); not new message lost(M;C):4.2 The Agents' Reaction RulesThe reaction rules specify how the agents behave. Since the behavior dependson their diagnostic �ndings they need meta predicates to revise their knowledge12
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base in the light of new observations. Based on the revisions three results areinteresting1. There is no diagnosis to explain the observation (no diags).2. There is a diagnosis that the agent itself is abnormal. In this case, sincean agent knows its own state, other diagnoses are not of interest.3. There are diagnoses which do not involve the agent itself (next). In thiscase the agent abduces a new, re�ned observation.With the two meta predicates no diags=1 and next=2 we encode the agents'reaction rules:If an agent receives an observation and has no explanation for it, the faultmust be intermittent, since neither the agent itself is faulty nor are any neighborsto accuse. This is reported to the requesting agent:sendMsg(intermittent failure(B); A)  � recvMsg(message lost(N;C); A);no diags(message lost(N;C));Def. 2:7:2 i am(B):If an agent receives an observation and is himself the cause of the problemsit reports this fact back to the requesting agent:sendMsg(responsible(B); A)  � recvMsg(message lost(N;C); A);Def. 2:7:1 i am(B); obs(down;B):If the agents area is not abnormal and there are diagnoses suspecting theagents neighbors, the newly abduced observation is sent to the suspected neigh-bor:sendMsg(message lost(M;C);M)  � recvMsg(message lost(N;C); A);i am(B); not obs(down;B);Def. 2:7:3 next(M;message lost(N;C)):In this case the agent has to remember to forward the �nal diagnosis resultto the requesting agent:remember to reply to(A)  � recvMsg(message lost(N;C); A);N 6= A; i am(B); not obs(down;B);not no diags(message lost(N;C)):If an agent receives a diagnosis result from one of its neighbors and has toreport the result to another neighbor, it forwards it:sendMsg(intermittent failure(A); C)  � recvMsg(intermittent failure(A); B);remember to reply to(C):sendMsg(responsible(A); C)  � recvMsg(responsible(A); B);remember to reply to(C):13
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After forwarding a diagnosis result, the \bookmark" to reply is removedfrom the agent's knowledge base:neg(remember to reply to(C))  � recvMsg(intermittent failure(A); B);remember to reply to(C):neg(remember to reply to(C))  � recvMsg(responsible(A); B);remember to reply to(C):4.3 TracesTo make the diagnosis process using the described knowledge base clearer, weconsider the following scenario. Node n1 sends a message to c7, but the messagesgets lost. Since n1 does not receive an acknowledgment, a timeout mechanisminforms n1 that the message is lost and the diagnosis process starts. In the�rst scenario n3 looses the message, whereas in the second one an intermittentfailure occured.Initially the creator process sends a start message to all nodes (1,2,3,4,9,14).The timeout mechanism informs n1 of the lost message (5,6). Node n1 knowsthat it is working �ne and suspects the neighbor in charge of sending messages toc7, namely n2. Subsequently n1 sends the re�ned observation that the message islost from n2 to c7 to n2 (8,10). Similarly n2 informs n3 (11,12,15). Additionallyit remembers that it has to report the �nal result to n1 (13). Finally, n3 turnsout to be the cause of the fault and the result is sent from n3 to n2 (16,17) andfrom n2 to n1 (18,19). n2 removes the fact that it has to respond to n1 (20).1 n2  � creator start2 n4  � creator start3 n1  � creator start4 n5  � creator start5 n1 �! n1 message lost(n1; c7)6 n1  � n1 message lost(n1; c7)7 n1 diag[ab(n2); new message lost(n2; c7)]8 n1 �! n2 message lost(n2; c7)9 n6  � creator start10 n2  � n1 message lost(n2; c7)11 n2 diag[ab(n3); new message lost(n3; c7)]12 n2 �! n3 message lost(n3; c7)13 n2 assimilates remember to reply to(n1)14 n3  � creator start15 n3  � n2 message lost(n3; c7)16 n3 �! n2 responsible(n3)17 n2  � n3 responsible(n3)18 n2 �! n1 responsible(n3)19 n1  � n2 responsible(n3)20 n2 assimilates neg remember to reply to(n1)In the second trace all nodes are ok at diagnosis time so the fault is inter-mittent. The initial phase is similar to the �rst trace. Only when n3 comes up14
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with no diagnoses (16), message of an intermittent failure is sent back.1 n2  � creator start2 n1  � creator start3 n5  � creator start4 n1 �! n1 message lost(n1; c7)5 n1  � n1 message lost(n1; c7)6 n1 diag[ab(n2); new message lost(n2; c7)]7 n1 �! n2 message lost(n2; c7)8 n2  � n1 message lost(n2; c7)9 n6  � creator start10 n2 diag[ab(n3); new message lost(n3; c7)]11 n2 �! n3 message lost(n3; c7)12 n2 assimilates remember to reply to(n1)13 n4  � creator start14 n3  � creator start15 n3  � n2 message lost(n3; c7)16 n3 nodiagnoses17 n3 �! n2 intermittent failure(n3)18 n2  � n3 intermittent failure(n3)19 n2 �! n1 intermittent failure(n3)20 n1  � n2 intermittent failure(n3)21 n2 assimilates neg remember to reply to(n1)5 ConclusionWe have de�ned an agent{based framework for the diagnosis of large spatiallydistributed technical systems. In this framework we assign an agent to everysubsystem. This agent has detailed knowledge over its own subsystem andabstract knowledge over its neighbors. Using its declarative system descriptionit can usually diagnose its own subsystem independently. Whenever it cannotdetect a cause for an observed fault, it accuses a suitable neighboring subnetand starts cooperation with the responsible agent. This distributed frameworkleads to attractive algorithm complexity compared to a centralized solution,both concerning communication overhead and computational complexity.Our implementation is based on the concepts of vivid agents and extendedlogic programming. The system description as well as the axioms needed fordistributed diagnosis are formulated as extended logic programs. Reaction rulesallow the exible implementation of the communication among the agents, sothat the cooperation can be tailored to all kinds of applications.We have implemented the diagnosis of lost messages in a computer networkas an example application and are planning to use the system for more complexengineering applications in the future.
15
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