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Abstract

In this paper we introduce an agent—based framework for the diagnosis
of spatially distributed technical systems, based on a suitable distributed
diagnosis architecture. We implement the framework using the concepts
of vivid agents and extended logic programming. To demonstrate the
power of our approach, we solve a diagnosis example from the domain of
unreliable datagram protocols.
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1 Introduction

The advent of large distributed technical systems like computer and telecommu-
nication networks has been one of the most striking developments of our time.
Research in model based diagnosis as documented in several Al conferences and
a series of workshops [Pro94, Nej95] has up to now not tackled the question how
to support such systems by a suitable diagnosis architecture.

We introduce an agent—based framework for the diagnosis of spatially distrib-
uted systems. The motivation for such a framework is the unnecessary complex-
ity and communication overhead of centralized solutions. Consider a distributed
system with n nodes, e.g. a computer network consisting of n machines. When
using a centralized diagnosis system the size of the system description (i.e. num-
ber of ground formulas) is linear in n. Diagnosis time will usually be worse than
linear in n [MH93]. Also all observations have to be transmitted to the central
diagnosis machine, causing a large communication overhead.

Our agent based approach decomposes a system into a set of subsystems.
Each subsystem is diagnosed by an agent which has detailed knowledge over his
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subsystem and an abstract view of the neighboring subsystems. Most failures
can be diagnosed locally within one subsystem. This decreases diagnosis time
dramatically in large systems. In the case of the computer network most ma-
chines in a subnet can usually fail without affecting machines in other subnets.
Only those computers in other subnets can be affected which have sent messages
to the faulty machine. Moreover, the local computation of diagnoses avoids the
communication overhead which would be needed to forward all observations to
the central diagnosis engine.

Failures, which affect more than one subsystem are diagnosed by the agents
cooperating with each other. The cooperation process is triggered locally by an
agent, when it realizes that it can not explain the observations by a failure in
his own subsystem. The cooperation process is guided by a small amount of
topological information.

We have implemented spatially distributed diagnosis using extended logic
programming [SAAMP96, SW96] and the vivid agents concept [Wag96a, Wag96b].
Vivid agents support both the declarative description of the domain by a flexi-
ble knowledge base component and the specification of the reactive behavior of
agents by a set of rules, which are activated by communication events.

To demonstrate the power of our approach we formalize the domain of an
unreliable protocol (like UDP) in a computer network and diagnose an example
scenario.

2 Spatially Distributed Diagnosis

In their survey article in [BG88], Bond and Gasser discuss several measures of
conceptual distance among agents, which define different types of distribution.
In [FN96] semantical and spatial distribution are identified as the relevant dis-
tribution concepts for diagnosis. Semantical distribution refers to a situation
where the knowledge is distributed among the agents. Each agent is an expert
for a certain problem domain. Diagnostic concepts for semantical distribution
must rely on external criteria rather than cooperation among the agents because
the knowledge bases of the diagnostic agents are not compatible.

In this paper we describe spatially distributed diagnosis. Distributed tech-
nical systems often consist of subsystems which have the same structure. So
we can describe the subsystems by a common set of axioms. The particular
properties of the concrete subsystem are defined by logical facts. As we will see,
the description of the subsystems by a common vocabulary allows us to resolve
conflicts using cooperation among the agents.

After giving a short overview of the necessary concepts from model-based
diagnosis, we will describe our view of spatially distributed diagnosis in more
detail. Then we will define the diagnostic conflicts between the subsystems as
well as the distributed diagnosis concept formally.
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Figure 1: Model Artifact Difference

2.1 Model-based Diagnosis

Heuristic rule-based expert systems were the first approach to automated di-
agnosis. The knowledge bases of such systems could not be easily modified or
verified to be correct and complete. These difficulties have been overcome by
the introduction of model-based diagnosis [Rei87], where a simulation model of
the device under consideration is used to predict its normal behavior, given the
observed input parameters. Diagnoses are computed by comparison of predicted
vs. actual behavior (Fig. 1).

This approach uses an extendible logical model of the device, called the
system description (SD), usually formalized as a set of formulas expressed in
first—order logic. The system description consists of a set of axioms charac-
terizing the behavior of system components of certain types. The topology is
modeled separately by a set of facts.

We will now define the diagnostic concept mathematically. The diagnostic
problem is described by system description SD, a set COMP of components and
a set OBS of observations (logical facts). With each component we associate a
behavioral mode: Mode(c, Ok) means that component ¢ is behaving correctly,
while Mode(c, Ab) (abbreviated by Ab(c)) denotes that ¢ is faulty.

In Consistency Based Diagnosis, the concept we are using throughout this
paper, a Diagnosis D is a set of faulty components, such that the observed
behavior is consistent with the assumption, that exactly the components in D
are behaving abnormally. If a diagnosis contains no proper subset which is itself
a diagnosis, we call it a Minimal Diagnosis.

Definition 2.1 (Reiter 87) A Diagnosis of (SD, COMP, OBS) is a set A C
COMP, such that SDU OBSU {Mode(c,Ab)lc € COMP} U {—Mode(c,Ab)|c €
COMP— A} is consistent. A is called a Minimal Diagnosis, iff it is the minimal
set (wrt. C) with this property.

Minimal Diagnoses are a natural concept, because we do not want to assume
that a component is faulty, unless this is necessary to explain the observed
behavior. Since the set of minimal diagnoses can be still quite large and the
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ultimate goal is to identify a single diagnosis, stronger minimality criteria are
used which allow stronger discrimination among the diagnoses.

The most frequently used concepts are Minimal Cardinality Diagnosis and
Most Probable Diagnosis. In addition to these stronger definitions of diagnosis
the agents can use measurements to discriminate among competing diagnoses.

For our distributed diagnosis framework we assume that every agent has
identified a single diagnosis for its subsystem.

2.2 Properties of Spatial Distribution

Spatial distribution is a natural organization scheme for the distributed diag-
nosis of large technical systems like communication networks. With each agent
we associate a certain area of the system, for which it is responsible.

Consider a large distributed system, e.g. a communication network, which
is divided into a set of spatially distributed subsystems (subnets), as shown in
figure 2. Each square in the grid is a subsystem and has a diagnostic agent
associated with it.

T 1 T

.
-

N5

Figure 2: A communication network

What could be the system view of agent 417 Of course, it has detailed knowl-
edge about its own subsystem (provided by the control component). For compo-
nents in its own subsystem the agent himself is responsible and its diagnoses are
reliable. Since it does not share its local observations and measurements with
other agents (except for specialized information used during cooperation) it is
the only agent, which can compute detailed diagnosis of its subsystem. In the
decentralized structure of this network, the machine C5 must have at least some
routing information. It has to know that there are two adjacent subnets N>
and Ng, to which it can send information. More generally we assume that each
agent has some information on the neighboring subsystems, i.e. the subsystems
directly connected to its own in the system structure.

Now we will describe this view by means of abstractions and simplifications:
An agent A; knows only the name of each neighboring subnet N; (and perhaps
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a name of a server within N;) but not N;’s internal structure. When A; diag-
noses an error involving subnet N; (e.g. a lost message routed via N;), then the
diagnosis will contain Mode(N;, Ab). The abstract literal Mode(N;, Ab) implic-
itly implies that some particular component within N; is faulty. In general, an
agent A; has an abstract model of the neighboring subsystems. Furthermore,
A; only knows that N; is the first subnet on the route to the destination of
the lost message. It is a simplifying assumption, that N; is the only subnet
involved in the transmission. Stated more generally, an agent A; initially uses
the simplifying assumption that all errors it cannot explain are caused by its
immediate neighbors. We will see, how he can get more detailed information
during the cooperation process.

2.3 Formalization

The subsystems and also the components within each subsystem have standard
names. A predicate Area_Component denotes that component ¢ is situated
within area a of the system. We call the extension of this predicate for a given
system the Component Hierarchy.

Definition 2.2 Component Hierarchy. The Component Hierarchy CH for a
distributed system is a set of facts for the predicate Area_Component.

Example 2.3 For our communication network we have

Area_Component(Ny,Ch)
Area_Component(Ny, Cy)

CH: Area_Component(Na, C3)

Using the predicate Area_Component, we can formulate a consistency con-
dition between the abstract subsystem level and the detailed component level.
We define the consistency of abstractions axiom:

Definition 2.4 Consistency of Abstractions. The axiom

CA :Ve.  ((Mode(e, Ab) A Ad. Area_Component(c, d))
— Je.(Area_Component(c,e) A Mode(e, Ab)))

requires, that each abnormality of an abstract component is caused by an abnor-
mality of one of its subcomponents.

The axiom Disjointness of Modes states that a component can only be in
one behavioral mode at a given time point and is expressed by the following
axiom:

Definition 2.5 Disjointness of Modes.

DM : YeNmq YNmay.(Mode(c,m1) A Mode(c, ma)) = mq = may
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2.4 Diagnosis by Cooperation

Each diagnostic agent knows only a small part of the entire system. It can
compute diagnoses independently, because it maintains a set of assumptions
concerning the other parts of the system. In this paper, we will assume that
all locally computed diagnoses are considered as reliable. The bargain from
distributed diagnosis is that a lot of problems can be solved locally so that the
simplifying assumptions hold. The cooperation process is necessary when an
agent cannot detect a faulty component within its subsystem. In this case, it
starts a cooperation process:

Definition 2.6 Need for Cooperation

Given observations OBS, a component hierarchy CH, the aziom of consistency
of abstractions CA, and a system description SD such that CH,CA € SD. If A;
knows that it is not abnormal, i.e.

SDn; U OBS = =Mode(N;, Ab) and SDn, U OBSU {Mode(N;, Ab)} [~ —

then there is a need for cooperation to determine a global diagnosis and N;
is a possible partner for cooperation.

Example 1 In the example of the communication network the observation of a
lost message (let us assume an unreliable protocol such as UDP) means that it
was lost somewhere on the way from sender to recipient. But of course the agents
know only their own subnet in detail and have an abstract view of the neighboring
subnets. Reported loss of a datagram is formalized as an observation using the
predicate Message_Lost. Message_Lost(Ny, N5) means that a lost message has
been reported which was sent from network Ny to network N5. When agent A;
transmits a message via a neighboring subnet N; and the message is lost, A;
will assume that it was lost in N; since this is the only point on the route it
knows. We can formalize this simplifying assumption explicitly by introducing
a predicate On_Route.

CLM : Message_Lost(Sender, Recipient)
— Je.(On_Route(Sender, Recipient,n) A Mode(n, Ab))

is called Existence of a Cause for a Lost Message.
Initially, each agent A; knows the following facts about On_Route, if N, is
the routing table entry of Recipient,,:

RT : On_Route(N;, Recipient,, N;)
On_Route(N;, Recipient,, N, )
On_Route(N;, Recipient,, N;)
On_Route(N;, Recipient,, N,.,)

Now assume a message gets lost from Ny to Cr, i.e. Message_Lost(Ny,Cr)
and the agent A, determines that it is not its fault, i.e. ~Mode(Ny, Ab) holds.
Then Ay computes a local diagnosis Mode(N2, Ab) and thus there is a need for
cooperation in order to obtain a global solution.
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A cooperation process is started by sending/receiving an observation. With
the new observation the agent computes diagnoses which can lead to three dif-
ferent situations. First, it might turn out that it is abnormal itself. Then other
solutions can be neglected since we assume that the agents have certain knowl-
edge about their own state. Second, there are no diagnoses at all which means
that the initial fault is intermittent. Third, there is a need for cooperation.
Then the agent refines the received observation and sends it to the neighbor
waiting for its reply. In any of the cases the requesting agent is informed of the
final result.

Definition 2.7 Diagnosis by Cooperation
Given an agent Ay which receives a message from agent As with an observation
OBS such that SD4, U OBS |= — then there are three cases:

1. SD4, U OBS U {Mode(Ny, Ab)} £ —, i.e. the agent’s own subsystem is
faulty

2. there are no D such that SDa, U OBSUD % —, then there must have been
an intermittent failure

3. there is a need for cooperation (see definition 2.6) and the observation is
refined and sent to another agent which is then in charge of providing a
diagnosis result

The diagnosis result is sent to As.

Example 2 Assume A receives by a subcomponent the message that a message
is lost from Ny to C7 and Ny not being abnormal. A diagnosis of Ay is that A,
is abnormal and thus there is a need for cooperation. The initial observation
Message_Lost(N1,C7) is refined as follows:

RO : Message_Lost(Sender, Recipient) A = Mode(Sender, Ab)A
On_Route(Sender, Recipient, Next_Sender) —
New_Message_Lost( Next_Sender, Recipient)

The new observation is sent to Ay. Since as is not abnormal this agent asks
As for help. As is faulty and replies that it is responsible. Ay passes this result
to Ay. The union of all system descriptions involved is consistent with the final
diagnosis of As.

Now we can define distributed diagnosis. A diagnosis for the union of all
system descriptions is called distributed diagnosis:

Definition 2.8 Distributed Diagnosis

A Distributed Diagnosis of ({SDa,,...SDa, }, COMP, OBS) is a set A C COMP,
such that SD4,U...USD4, UOBSU{ Mode(c,Ab)|c € COMP}U{—=Mode(c,Ab)|c €
COMP — A} is consistent.

Example 3 {Mode(N3, Ab), Mode(C7, Ab)} is a distributed diagnosis for the
system description and observations in the above example.
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In order to implement the scenario above we need separate diagnostic agents
for each area. The agents need a knowledge base containing the description of
their area and they have to be capable of reactive behavior in order to solve a
problem in cooperation with other agents.

The theoretical basis of the implementation is the concept of vivid agents
[Wag96b] and a prototype developed for fault-tolerant diagnosis [SAAMP9G6,
SWO96]. Below we briefly review the vivid agents and extended logic program-
ming. We proceed by showing how the axioms can be expressed as extended
logic program and how the agents’ reactive behavior is coded in terms of reac-
tion rules. We round out the picture with a trace of the agents’ communication
after a message is lost.

3 Vivid Agents

A wivid agent is a software-controlled system whose state is represented by a
knowledge base, and whose behavior is represented by means of action and re-
action rules. Following [Sho93], the state of an agent is described in terms of
mental qualities, such as beliefs and intentions. The basic functionality of a
vivid agent comprises a knowledge system (including an update and an infer-
ence operation), and the capability to represent and perform actions in order
to be able to generate and execute plans. Since a vivid agent is ‘situated’ in an
environment with which it has to be able to communicate, it also needs the abil-
ity to react in response to perception events, and in response to communication
events created by the communication acts of other agents.

Notice that the concept of vivid agents is based on the important distinction
between action and reaction: actions are first planned and then executed in order
to solve a task or to achieve a goal, while reactions are triggered by perception
and communication events. Reactions may be immediate and independent from
the current knowledge state of the agent but they may also depend on the result
of deliberation. In any case, they are triggered by events which are not controlled
by the agent. A vivid agent without the capability to accept explicit tasks and
to solve them by means of planning and plan execution is called reagent. The
tasks of reagents cannot be assigned in the form of explicit (’see to it that’)
goals at run time, but have to be encoded in the specification of their reactive
behavior at design time.

We do not assume a fixed formal language and a fixed logical system for the
knowledge-base of an agent. Rather, we believe that it is more appropriate to
choose a suitable knowledge system for each agent individually according to its
domain and its tasks. In the case of diagnosis agents, extended logic programs
proved to be an appropriate form of the knowledge base of an agent because
it is essential for model-based diagnosis to be able to represent negative facts,
default rules and constraints.
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3.1 Specification and Execution of Reagents

Simple vivid agents whose mental state comprises only beliefs, and whose behav-
ior is purely reactive, i.e. not based on any form of planning and plan execution,
are called reagents. A reagent A = (X, EQ, RR), on the basis of a knowledge
system K consists of

1. a knowledge base X € Lkn,
2. an event queue E(@) being a list of instantiated event expressions, and

3. a set RR of reaction rules, consisting of epistemic and physical reaction
and interaction rules which code the reactive and communicative behavior
of the agent.

A multi-reagent system is a tuple of reagents:

3.1.1 Operational Semantics of Reaction Rules

Reaction rules encode the behavior of vivid agents in response to perception
events created by the agent’s perception subsystems, and to communication
events created by communication acts of other agents. We distinguish between
epistemic, physical and communicative reaction rules, and call the latter inter-
action rules. We use Lpgyt and Logyt to denote the perception and communica-
tion event languages, and Lyt = Lpgyt U Logys- The following table describes
the different formats of epistemic, physical and communicative reaction rules:

Eff <« recvMsgle(U),S], Cond
do(a(V)), Eff <+ recvMsg[e(U),S], Cond
sendMsg[n(V), R], Eff <« recvMsgle(U),S], Cond

The event condition recvMsg[e(U), S] is a test whether the event queue of the
agent contains a message of the form (U) sent by some perception subsystem
of the agent or by another agent identified by S, where £ € Ly, represents a
perception or a communication event type, and U is a suitable list of parame-
ters. The epistemic condition Cond € Lquery refers to the current knowledge
state, and the epistemic effect Eff € Liyput specifies an update of the current
knowledge state.

Physical Reaction: do(a(V')) calls a procedure realizing the action a with
parameters V.

Communicative Reaction: sendMsg[n(V'), R] sends the message n € Lcgyt
with parameters V to the receiver R.

Both perception and communication events are represented by incoming mes-
sages. In general, reactions are based both on perception and on knowledge.
Immediate reactions do not allow for deliberation. They are represented by
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rules with an empty epistemic premise, i.e. Cond = true. Timely reactions can
be achieved by guaranteeing fast response times for checking the precondition
of a reaction rule. This will be the case, for instance, if the precondition can be
checked by simple table look-up (such as in relational databases or fact bases).

Reaction rules are triggered by events. The agent interpreter continually
checks the event queue of the agent. If there is a new event message, it is
matched with the event condition of all reaction rules, and the epistemic condi-
tions of those rules matching the event are evaluated. If they are satisfiable in
the current knowledge base, all free variables in the rules are instantiated ac-
cordingly resulting in a set of triggered actions with associated epistemic effects.
All these actions are then executed, leading to physical actions and to sending
messages to other agents, and their epistemic effects are assimilated into the
current knowledge base.

4 Extended Logic Programming and Model-based
Diagnosis

In order to represent diagnosis problems we briefly review extended logic pro-
gramming and its application to model-based diagnosis.

Since Prolog became a standard in logic programming much research has
been devoted to the semantics of logic programs. In particular, Prolog’s unsat-
isfactory treatment of negation as finite failure led to many innovations. Well-
founded semantics [GRS88] turned out to be a promising approach to cope with
negation by default. Subsequent work extended well-founded semantics with a
form of explicit negation and constraints [PA92] and showed that the richer lan-
guage, called WFSX, is appropriate for a spate of knowledge representation and
reasoning forms [PAA93, PDA93, ADP95]. In particular, the technique of con-
tradiction removal of extended logic programs [PAA91] opens up many avenues
in model-based diagnosis [PDA93, DNP94, DNPS95, DPS96, SAAMP96, SW96].

Definition 4.1 Extended Logic Program
An extended logic program is a (possibly infinite) set of rules of the form

Lo+ Ly,...,Lyp,notLyq,. .., notL, (0 <m <n)

where each L; is an objective literal (0 < i < n). An objective literal is either
an atom A or its explicit negation —A.> Literals of the form notL are called
default literals. Literals are either objective or default ones.

To capture that it is contradictory for the predicted behavior to differ from
the actual observations, we introduce integrity constraints:

Definition 4.2 Constraint
An integrity constraint has the form

— <« Li,...,Lyy,notLyy1,...,n0tL, (0 <m < n)

3Note that explicit and implicit negation are related: —L implies not L.
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where each L; is an objective literal (0 <i < n), and — stands for false.

In order to avoid a contradiction we change the beliefs that support the
contradiction. The only beliefs that are subject to change concern the closed
world assumption ones. From these we can define a set of revisable default
literals, whose truth values may be changed to remove contradictions.

Definition 4.3 Revisable
The revisables R of a program P are a subset of the default negated literals which
do not have rules in P.

In general, we might remove a contradiction by partially dropping the closed
world assumption about some revisable. To declaratively define the contradic-
tion removal, we consider all subsets R’ of the revisables, change the truth value
of the literals in R’ from false to true and check whether the revised program
is still contradictory. Among those revisions that remove the contradiction we
are interested in the minimal ones:

Definition 4.4 Revision
Let R be the revisables of the program P. The set R' C R is called a revision if
it is a minimal set such that P U R' is free of contradiction.

The revision of contradictory extended logic programs is a suitable technique
to compute diagnoses for model-based diagnosis.

4.1 The Agents Knowledge Base

Using the extended logic programming formalism, the agents knowledge base
contains the following logic sentences:

Routing tables The routing information comprises facts stating to which
neighbor node a message addressed to a component has to be sent. The knowl-
edge is local since each agent only knows its neighbors. In order to keep the
facts in a single knowledge base which is the same for all agents the facts hold
only for the respective agent (i_am). For example, for n; and ns we get the
following routing tables:

RT :
on_route(ni,cs,ma) <~ i_am(ng). on_route(ng, c1,m1) < i_am(nsg).
on_route(ni,ca,ma) <~ i_am(ng). on_route(ng, ca,m1) < i_am(ns).
on_route(ny,cs,ma) <~ i_am(ng). on_route(ns, cs,m3) < i_am(ns).
on_route(ny,cg,n2) < iam(ng). on_route(na,cg,ng) < iam(na).
on_route(ny,cr,ne) < iam(ng). on_route(na,cr,ng) < iam(na).
on_route(ni,cg,mg) < i_am(ng). on_route(nsg, cg,m1) < i_am(ns).
on_route(ny, cg,ma) < i_am(ng). on_route(nsg, cg,ms) < i_am(ns).

on_route(ni,cig,n2) < i_am(ng). on_route(ns, cig,Ms) < i_am(ns).

11
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Component Hierarchy Additionally, each agent knows its components. Since
this knowledge is local it is only derivable for the respective agent (i_am):

CH :

area_component(ni,c1) < i.am(ni). area_component(ng,cg) < i_am(ns)
area_component(ni,ce) < i_am(ni). area_component(ns,c;) <« i_am(ns)
area_component(na,cs) < i_am(ng). area_component(ng,cg) < i_am(ng)
area_component(na,cq) < i.am(n2). area_component(ns,cyg) <+ i_am(ns)
area_component(ns,cs) < i.am(nz). area_component(ng,cig) < i_am(ng)

Disjointness of Modes In the implementation we model only two modes,
abnormality (ab) and being ok (not ab). Therefore disjointness of modes is
satisfied. The predicate ab is revisable. The default truth value of the predicate
ab is false, which means that by default we assume components to be working
fine. Possible contradictions to these assumption are caused by violation of
consistency of abstraction and existence of a cause for a lost message.

Consistency of Abstraction An abnormal area contains at least one abnor-
mal component. A contradiction arises if the area is detected to be abnormal
but no faulty component is abduced. This constraint has only local character
(i-am), since an agent cannot detect abnormal components of other areas.

CA: — «i_.am(N),ab(N),not has_ab_component(N).
has_ab_component(N) <+ area_component(N,C),ab(C).

Existence of a cause for a lost message The basic integrity constraint
to start the diagnostic process states that it is contradictory to observe a lost
message from node N to component C and not to have lost it on the route from
N to C. The message is lost somewhere on this route route if at least one the
involved nodes is abnormal:

CLM : — < messagelost(N,C),notlost_on_route(N,C).
lost_on_route(N,C) < ab(N).
lost_on_route(N,C) < on_route(N,C,M),ab(M).

The following constraint allows us to abduce new observations. If a message
is lost from N to C and M is a neighbor of N which is assumed to be abnormal
by N, then N abduces the new observation that the message was lost on the
way from M to C:

RO : — <+ messagelost(N,C),on_route(N,C, M),
ab(M), not new_message_ lost(M,C).

4.2 The Agents’ Reaction Rules

The reaction rules specify how the agents behave. Since the behavior depends
on their diagnostic findings they need meta predicates to revise their knowledge

12
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base in the light of new observations. Based on the revisions three results are
interesting

1. There is no diagnosis to explain the observation (no_diags).

2. There is a diagnosis that the agent itself is abnormal. In this case, since
an agent knows its own state, other diagnoses are not of interest.

3. There are diagnoses which do not involve the agent itself (next). In this
case the agent abduces a new, refined observation.

With the two meta predicates no_diags/1 and next/2 we encode the agents’
reaction rules:

If an agent receives an observation and has no explanation for it, the fault
must be intermittent, since neither the agent itself is faulty nor are any neighbors
to accuse. This is reported to the requesting agent:

sendMsg(intermittent_failure(B),A) <+— recvMsg(messagelost(N,C), A),
no_diags(message_lost(N,C)),
Def.2.7.2 i-am(B).

If an agent receives an observation and is himself the cause of the problems
it reports this fact back to the requesting agent:

sendMsg(responsible(B), A) <+— recvMsg(message_lost(N,C), A),
Def.2.7.1 i_am(B), obs(down, B).

If the agents area is not abnormal and there are diagnoses suspecting the
agents neighbors, the newly abduced observation is sent to the suspected neigh-
bor:

sendMsg(message_lost(M,C), M) <«+— recvMsg(messagelost(N,C), A),
i_am(B),not obs(down, B),
Def.2.7.3 next(M,message_lost(N,C)).

In this case the agent has to remember to forward the final diagnosis result
to the requesting agent:

remember_to_reply_to(A) <+— recvMsg(message_lost(N,C), A),
N # Ai_am(B), not obs(down, B),
not no_diags(message_lost(N,C)).

If an agent receives a diagnosis result from one of its neighbors and has to
report the result to another neighbor, it forwards it:

sendMsg(intermittent_failure(A),C) <+— recvMsg(intermittent_failure(A), B),
remember_to_reply_to(C).
sendMsg(responsible(A),C) <+— recvMsg(responsible(A), B),
remember_to_reply_to(C).

13
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After forwarding a diagnosis result, the “bookmark” to reply is removed
from the agent’s knowledge base:

neg(remember_to_reply to(C)) <«— recvMsg(intermittent_failure(A), B),
remember_to_reply_to(C).

neg(remember _to_reply_to(C)) <«+— recvMsg(responsible(A), B),
remember_to_reply_to(C).

4.3 Traces

To make the diagnosis process using the described knowledge base clearer, we
consider the following scenario. Node n; sends a message to ¢y, but the messages
gets lost. Since n; does not receive an acknowledgment, a timeout mechanism
informs n; that the message is lost and the diagnosis process starts. In the
first scenario n3 looses the message, whereas in the second one an intermittent
failure occured.

Initially the creator process sends a start message to all nodes (1,2,3,4,9,14).
The timeout mechanism informs ny of the lost message (5,6). Node n; knows
that it is working fine and suspects the neighbor in charge of sending messages to
c7, namely no. Subsequently n1 sends the refined observation that the message is
lost from ny to ¢z to ny (8,10). Similarly ny informs ng (11,12,15). Additionally
it remembers that it has to report the final result to ny (13). Finally, n3 turns
out to be the cause of the fault and the result is sent from ns to no (16,17) and
from na to ny (18,19). ny removes the fact that it has to respond to n; (20).

1| ny <«— creator | start
2| nyg <«— creator | start
3| n1 <«— creator | start
4 | nsg <— creator | start
5ln; — m message_lost(ni,cr)
6| ng +— m message_lost(ni,cr)
7| m diaglab(ns), new_message_lost(na, c7)]
81 nmi — na message_lost(na, cr)
9| ng <— creator | start
10 | ny +— ny message_lost(na, cr)
11 | no diag[ab(ns), new_message_lost(ns, cr)]
12 | ny — ng3 message_lost(ns, cr)
13 | no assimilates remember to_reply_to(ny)
14 | ng <+— creator | start
15| ng <— n9 message_lost(ns, cr)
16 | ng — no responsible(ng)
17 | ny <— ng3 responsible(ng)
18 | my — ny responsible(ng)
19 | ny <— ns9 responsible(ng)
20 | no assimilates negremember_to_reply to(ny)

In the second trace all nodes are ok at diagnosis time so the fault is inter-
mittent. The initial phase is similar to the first trace. Only when n3 comes up
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with no diagnoses (16), message of an intermittent failure is sent back.

1| ny <— creator | start
2| ny <«— creator | start
3| ns <«— creator | start
4 1n — n message_lost(ni,cr)
5| n; +— m message_lost(ni,cr)
6 | ny diaglab(ns), new_message_lost(na, c7)]
Tlni — mns message_lost(na, cr)
8| ny +— ny message_lost(na, cr)
9| ng <— creator | start
10 | no diag[ab(ns), new_message_lost(ns, cr)]
11 | ny — ng3 message_lost(ns, cr)
12 | no assimilates remember to_reply_to(ny)
13 | ngy <+— creator | start
14 | n3 <+— creator | start
15| ng <— no message_lost(ns, cr)
16 | ng nodiagnoses
17 | n3 — ns9 intermittent_failure(ns)
18 | my <«— ng3 intermittent_failure(ns)
19| ny — ny intermittent_failure(ns)
20 | n1 — no intermittent_failure(ns)
21 | no assimilates negremember_to_reply to(ny)

5 Conclusion

We have defined an agent based framework for the diagnosis of large spatially
distributed technical systems. In this framework we assign an agent to every
subsystem. This agent has detailed knowledge over its own subsystem and
abstract knowledge over its neighbors. Using its declarative system description
it can usually diagnose its own subsystem independently. Whenever it cannot
detect a cause for an observed fault, it accuses a suitable neighboring subnet
and starts cooperation with the responsible agent. This distributed framework
leads to attractive algorithm complexity compared to a centralized solution,
both concerning communication overhead and computational complexity.

Our implementation is based on the concepts of vivid agents and extended
logic programming. The system description as well as the axioms needed for
distributed diagnosis are formulated as extended logic programs. Reaction rules
allow the flexible implementation of the communication among the agents, so
that the cooperation can be tailored to all kinds of applications.

We have implemented the diagnosis of lost messages in a computer network
as an example application and are planning to use the system for more complex
engineering applications in the future.
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